Modular Synthetic Inverters from Zinc Finger Proteins and Small RNAs
نویسندگان
چکیده
منابع مشابه
Modular Synthetic Inverters from Zinc Finger Proteins and Small RNAs.
Synthetic zinc finger proteins (ZFPs) can be created to target promoter DNA sequences, repressing transcription. The binding of small RNA (sRNA) to ZFP mRNA creates an ultrasensitive response to generate higher effective Hill coefficients. Here we combined three "off the shelf" ZFPs and three sRNAs to create new modular inverters in E. coli and quantify their behavior using induction fold. We f...
متن کاملNatural and artificial zinc finger proteins
Zinc finger proteins acquire DNA-binding ability by Zn (II) complexation. In the zinc finger domain of the Cys2His2 type, each finger is approximately 30 amino acid residues long and consists of a simple ββα–fold stabilized by chelation of a zinc ion with the conserved Cys2His2 residues. A zinc finger motif of Cys2His2 offers an attractive framework for the design of a novel DNA-binding protein...
متن کاملSynthetic Zinc Finger Proteins: The Advent of Targeted Gene Regulation and Genome Modification Technologies
The understanding of gene regulation and the structure and function of the human genome increased dramatically at the end of the 20th century. Yet the technologies for manipulating the genome have been slower to develop. For instance, the field of gene therapy has been focused on correcting genetic diseases and augmenting tissue repair for more than 40 years. However, with the exception of a fe...
متن کاملThe Ikaros family of zinc-finger proteins
Ikaros represents a zinc-finger protein family important for lymphocyte development and certain other physiological processes. The number of family members is large, with alternative splicing producing various additional isoforms from each of the five homologous genes in the family. The functional forms of Ikaros proteins could be even more diverse due to protein-protein interactions readily es...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2016
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0149483